Geschädigte Ökosysteme – Neue Methode, um die Widerstandsfähigkeit der Vegetation zu schätzen
Der Klimawandel setzt der Vegetation global gesehen stark zu. Das bestätigt eine Studie, die der Potsdamer Geowissenschaftler Dr. Taylor Smith gemeinsam mit Prof. Niklas Boers von der Technischen Universität München und dem Potsdam-Institut für Klimafolgenforschung durchgeführt hat. Die beiden Forschenden haben eine neuartige Methode entwickelt, um die Widerstandsfähigkeit der Vegetation auf verschiedenen räumlichen Ebenen anhand von Satellitendaten zuverlässiger abschätzen zu können.
Ihre in „Nature Ecology & Evolution“ veröffentlichte Arbeit zeigt die Schwierigkeiten auf, die mit der Abschätzung der Vegetationsresilienz auf globaler Ebene verbunden sind und stellt eine Methodik vor, mit der sich quantifizieren lässt, wie zuverlässig diese Abschätzungen sind.
Überall auf der Welt sind Vegetationsökosysteme bedroht – sowohl durch eine intensivere Landnutzung als auch durch die zunehmenden Auswirkungen des anthropogenen Klimawandels. Während einige Regionen von einem längeren Pflanzenwachstum oder steigenden atmosphärischen CO2-Konzentrationen profitieren, werden andere anfälliger für Dürren, Brände und ähnliche Naturereignisse. Besonders besorgniserregend ist dies in den Tropen – hier könnte der Regenwald schnell in eine Savanne übergehen, mit drastischen Auswirkungen auf Dorfgemeinschaften, Kohlenstoffspeicherung und Artenvielfalt. Daher ist es äußerst wichtig, die Widerstandsfähigkeit der natürlichen Vegetation, also ihre Fähigkeit, wechselnden Stressfaktoren zu widerstehen und sich davon zu erholen, regelmäßig zu überwachen.
„Wir haben festgestellt, dass die Vegetationsresilienz in vielen wichtigen Regionen mit dichter Biomasse, einschließlich des Amazonas und anderer äquatorialer Regenwälder, mit optischen Satellitendaten nicht zuverlässig abgeschätzt werden kann“, sagt Taylor Smith. „Das ist bedauerlich, da diese Regionen anfällig sind für großflächige Verschiebungen hin zu Landschaften mit geringerer Biomasse, wie offene Ebenen und Savannen.“ Nach einem systematischen Vergleich verschiedener Datensätze von Satellitenbildern, der räumlichen und zeitlichen Datenaufbereitung und der Methoden zur Schätzung der Widerstandsfähigkeit schlagen die Autoren einen Ansatz vor, der verschiedene Verzerrungen in früheren Ergebnissen vermeidet.
Sie fanden heraus, dass die Widerstandsfähigkeit der Vegetation zuverlässiger bestimmt werden kann, wenn man die Biomasse berücksichtigt. Regionen mit geringer Biomasse – wie weite Teile der mittleren Breiten – liefern hier die solidesten Daten. „Daraus haben wir ein räumlich konsistentes globales Muster von Resilienzgewinn und -verlust abgeleitet. Es zeigt sich, dass mehr Regionen mit abnehmender Widerstandsfähigkeit zu kämpfen haben, insbesondere in Afrika, Australien und Zentralasien“, fasst Taylor Smith zusammen. „Global gesehen können wir die bereits bekannte Tendenz zu einem Verlust der Widerstandsfähigkeit der Vegetation bestätigen, wenn auch in einem anderen räumlichen Bereich als bisher angenommen.“
Link zur Publikation: Smith, T., Boers, N. Reliability of vegetation resilience estimates depends on biomass density. Nature Ecology & Evolution 2023. https://www.nature.com/articles/s41559-023-02194-7
Abbildung: Globale Karte die zeigt, wo zuverlässige Resilienzabschätzungen der Vegetation möglich sind (blaue/orange Bereiche), mit Kategorien für Resilienzgewinn und -verlust, unklare Trends (schwarz) und geringe Datenqualität (pink). Bildrechte: Taylor Smith.
Kontakt:
Dr. Taylor Smith, Institut für Geowissenschaften
Tel.: 0331 977-5845
taylor.smith@uni-potsdam.de
Medieninformation 14-09-2023 / Nr. 091
Dr. Stefanie Mikulla
Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-1474
Fax: +49 331 977-1130
E-Mail: presse@uni-potsdam.de
Internet: www.uni-potsdam.de/presse
Originalpublikation:
Link zur Publikation: Smith, T., Boers, N. Reliability of vegetation resilience estimates depends on biomass density. Nature Ecology & Evolution 2023. https://www.nature.com/articles/s41559-023-02194-7