Flexible Tentakel-Elektroden messen Hirnaktivität präzise
Forschende der ETH Zürich haben ultraflexible Hirnsonden entwickelt. Damit lässt sich die Hirnaktivität genau und gewebeschonend messen. Das eröffnet der Therapie verschiedener neurologischer und psychiatrischer Erkrankungen neue Möglichkeiten.
Hirnschrittmacher sind normal geworden. Weltweit tragen Schätzungen zufolge 200'000 Menschen Elektroden im Gehirn, die bestimmte Hirnareale mit elektrischen Impulsen versorgen. Von solchen Hirnsonden profitieren zum Beispiel Menschen mit der Parkinson-Krankheit oder mit krankhaften Muskelkrämpfen. Nach Ansicht von Mehmet Fatih Yanik, Professor für Neurotechnologie an der ETH Zürich, wird die Forschung die Möglichkeiten dieser Technologie stark erweitern: Anstatt das Hirn mit solchen Sonden bloss zu stimulieren, können dieselben Elektroden auch verwendet werden, um die Aktivität der Hirnzellen aufzuzeichnen. Diese Aufzeichnungen können auf Anomalien untersucht werden, die mit neurologischen oder psychiatrischen Erkrankungen verbunden sind. In einem nächsten Schritt ist es denkbar, diese Anomalien und Erkrankungen wiederum mit elektrischen Impulsen zu behandeln.
Zu diesem Zweck haben Yanik und sein Team nun eine neue Art von Elektroden entwickelt, die detailliertere und präzisere Aufzeichnungen der Hirnaktivität über einen längeren Zeitraum ermöglichen. Die Elektroden bestehen aus Bündeln extrem feiner und flexibler Fasern aus Gold, die von einem Polymer umhüllt sind. Ein von den ETH-Forschern entwickeltes Verfahren ermöglicht es, diese Bündel sehr langsam ins Gehirn einzubringen. Sie verursachen daher keine nachweisbaren Schäden am Hirngewebe.
Damit unterscheiden sich die neuen Elektroden wesentlich von bisherigen Technologien, von denen die von Elon Musks Firma Neuralink in der Öffentlichkeit am bekanntesten sein dürfte. Alle bisherigen Technologien, auch die von Neuralink, arbeiten mit ziemlich groben Sonden. «Je gröber die Sonde, desto grösser ist das Risiko, damit das Hirngewebe zu schädigen», sagt Yanik. «Unsere feinen Elektroden haben zudem den Vorteil, dass sie sich im Gehirn zwischen die länglichen Fortsätze der Nervenzellen einfügen. Sie sind auch bloss etwa so dick wie diese Zellfortsätze.»
Die Forschenden testeten die neuen Elektroden an Ratten, in deren Gehirn sie vier Bündel mit je 64 Goldfasern implantierten. Prinzipiell könnten auch mehrere hundert Elektrodenfasern verwendet werden, um damit die Aktivität von noch mehr Gehirnzellen zu untersuchen, wie Yanik erklärt. Die Elektroden sind mit einem kleinen, auf dem Kopf befestigten Aufnahmegerät verbunden, weshalb sich die Ratten frei bewegen konnten.
Keinen Einfluss auf Hirnaktivität
In den Versuchen konnten die Forschenden bestätigen, dass die Sonden biokompatibel sind und sie die Hirnfunktion nicht beeinflussen. Weil die Elektroden sehr nahe an den Nervenzellen liegen, ist die Signalqualität sehr gut. Das Hintergrundrauschen ist nur halb so gross wie bei anderen Verfahren.
Ausserdem zeigten die Forschenden, dass sich die flexiblen Elektroden gut für Langzeitmessungen eignen: Während der gesamten Versuchsdauer von zehn Monaten zeichneten die Forschenden bei den Tieren Signale von denselben Zellen auf. Untersuchungen ergaben, dass in dieser Zeit keine Gewebeschäden im Gehirn auftraten. Und ein weiterer Vorteil ist: Da sich die Bündel in verschiedene Richtungen verzweigen, können sie verschiedene Hirnareale erreichen.
Bald am Menschen getestet
In der Studie verfolgten und analysierten die Forschenden mit den neuen Elektroden über mehrere Monate die Aktivität von Nervenzellen in verschiedenen Hirnregionen von Ratten. Dabei konnten sie registrieren, dass Nervenzellen in verschiedenen Regionen synchron aktiv sind. Dies ist unter dem Begriff Co-Aktivierung bekannt, und Wissenschaftler gehen davon aus, dass dieses grossräumige synchrone Zusammenspiel von Hirnzellen entscheidend ist, um komplexe Informationen zu verarbeiten und Erinnerungen zu bilden. «Unsere Methode ist äusserst interessant für die Grundlagenforschung, die diese Funktionen und Störungen dieser Funktionen bei neurologischen und psychiatrischen Erkrankungen untersucht», erklärt Yanik.
Die ETH-Forschenden haben sich mit Kolleginnen und Kollegen am University College London zusammengetan, um den Einsatz der neuen Elektroden zu diagnostischen Zwecken im menschlichen Gehirn testen. Konkret geht es um Patienten und Patientinnen mit Epilepsie, die auf eine medikamentöse Therapie nicht ansprechen. Um ihnen zu helfen, entfernen ihnen Neurochirurg:innen einen kleinen Teil des Gehirns, in dem die Anfälle ihren Ursprung haben. Die neue Technologie soll vor der Gewebeentnahme eingesetzt werden, um den betroffenen Hirnbereich genau zu lokalisieren.
Gehirn-Maschine-Schnittstellen
In Zukunft wollen die Forschenden mit den neuen Elektroden auch bei Menschen Hirnzellen stimulieren. «Das könnte zur Entwicklung wirksamer Therapien für Personen mit neurologischen und psychiatrischen Krankheiten beitragen», sagt Yanik. Bei Depressionen, Schizophrenie oder Zwangsstörungen ist häufig die Informationsverarbeitung in den betroffenen Hirnregionen gestört. Mithilfe solcher Elektroden könnte es möglich werden, die mit der Krankheit verbundenen Signale der neuronalen Netzwerke im Gehirn zu erkennen und sie in einem zweiten Schritt zu verändern, um damit den Patientinnen und Patienten zu helfen. Yanik denkt ausserdem an Gehirn-Maschine-Schnittstellen für Menschen mit Hirnverletzungen. Die Elektroden könnten helfen, die Absichten der Patienten zu erkennen und eine Prothese oder ein Sprachausgabesystem zu steuern.
Wissenschaftlicher Ansprechpartner:
Mehmet Fatih Yanik
yanik@ethz.ch
Originalpublikation:
Yasar TB, Gombkoto P, Vyssotski AL, Vavladeli AD, Lewis CM, Wu B, Meienberg L, Lundegardh V, Helmchen F, von der Behrens W, Yanik MF: Months-long tracking of neuronal ensembles spanning multiple brain areas with Ultra-Flexible Tentacle Electrodes, Nature Communications, 6. Juni 2024, doi: 10.1038/s41467-024-49226-9
Weitere Informationen:
https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2024/09/flexible-tentakel-elektroden-messen-hirnaktivitaet-praezise.html