Früherkennung macht Batterien sicherer: TU Darmstadt und MIT entwickeln Überwachungsmethoden mit Maschinellem Lernen
Die sichere Nutzung von Lithium-Ionen-Batterien, wie sie in Elektroautos und stationären Speichersystemen verwendet werden, hängt entscheidend von der Überwachung ihres Zustands und der frühzeitigen Fehlererkennung ab. Fehler in einzelnen Batteriezellen können zu ernsten Problemen wie Bränden führen. Um dies zu verhindern, haben Forschende der TU Darmstadt und des Massachusetts Institute of Technology (MIT) neue Methoden zur Analyse und Überwachung von Batterien mit Ansätzen des Maschinellen Lernens entwickelt.
Das Team aus Joachim Schaeffer, Eric Lenz und Professor Rolf Findeisen vom Institut für Automatisierungstechnik und Mechatronik der TU Darmstadt hat zusammen mit den Gruppen von Professor Richard Braatz und Professor Martin Bazant am MIT einen Ansatz entwickelt, der einfache physikalische Modelle und maschinelles Lernen kombiniert. Mithilfe sogenannter rekursiver Gauß-Prozesse können sie zeitliche und betriebsbedingte Veränderungen in Batteriezellen erkennen. Diese rekursiven Methoden lassen sich in Echtzeit anwenden und sind in der Lage, auch große Datenmengen effizient zu verarbeiten, was eine kontinuierliche Online-Überwachung von Batteriesystemen ermöglicht.
Für ihre Forschung konnten die Wissenschaftler auf einen einzigartigen Datensatz zurückgreifen: Ein Forschungspartner stellte anonym Daten von 28 Batteriesystemen zur Verfügung, die wegen Problemen an den Hersteller zurückgeschickt wurden. Der Datensatz umfasst über 133 Millionen Datenreihen von 224 Batteriezellen und ist einer der ersten seiner Art, der öffentlich zugänglich gemacht wurde.
Die Ergebnisse der methodischen Entwicklungen und Analysen, die soeben in der renommierten Zeitschrift „Cell Reports Physical Science“ erschienen sind, bestätigen, dass oft nur eine Zelle eines gesamten Batteriesystems auffällig wird und das System beeinträchtigt. Diese Erkenntnisse tragen dazu bei, besser zu verstehen, wie Batterien altern und unter welchen Bedingungen sie versagen. Die Methoden ermöglichen es, Batterien zukünftig kontinuierlich zu überwachen und somit die Sicherheit zu erhöhen.
Joachim Schaeffer, Doktorand am Control and Cyber Physical Systems Laboratory am Fachbereich Elektrotechnik und Informationstechnik der TU Darmstadt und am MIT, wurde für die im Rahmen des Projekts entstandenen, öffentlich zugänglichen Daten mit dem MIT Open Data Prize ausgezeichnet. Aus über 70 Einreichungen wurden zehn Preisträger ausgewählt.
Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland und steht für exzellente und relevante Wissenschaft. Globale Transformationen – von der Energiewende über Industrie 4.0 bis zur Künstlichen Intelligenz – gestaltet die TU Darmstadt durch herausragende Erkenntnisse und zukunftsweisende Studienangebote entscheidend mit.
Ihre Spitzenforschung bündelt die TU Darmstadt in drei Feldern: Energy and Environment, Information and Intelligence, Matter and Materials. Ihre problemzentrierte Interdisziplinarität und der produktive Austausch mit Gesellschaft, Wirtschaft und Politik erzeugen Fortschritte für eine weltweit nachhaltige Entwicklung.
Seit ihrer Gründung 1877 zählt die TU Darmstadt zu den am stärksten international geprägten Universitäten in Deutschland; als Europäische Technische Universität baut sie in der Allianz Unite! einen transeuropäischen Campus auf. Mit ihren Partnern der Rhein-Main-Universitäten – der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz – entwickelt sie die Metropolregion Frankfurt-Rhein-Main als global attraktiven Wissenschaftsraum weiter.
www.tu-darmstadt.de
MI-Nr. 42/2024, Findeisen/Schaeffer/sip
Wissenschaftlicher Ansprechpartner:
Prof. Dr.-Ing. Rolf Findeisen
Tel.: +49 6151 16-25200
E-Mail: rolf.findeisen@iat.tu-darmstadt.de
Originalpublikation:
Die Studie ist online unter: https://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(24)00563-0